翻訳と辞書
Words near each other
・ Duffield Castle, Derbyshire
・ Duffield Castle, North Yorkshire
・ Duffield Frith
・ Duffield Gate railway station
・ Duffield Hall
・ Duffield Osborne
・ Duffield railway station
・ Duffield, Alberta
・ Duffield, Derbyshire
・ Duffield, Virginia
・ Duffields (MARC station)
・ Duffields Depot
・ Duffields, West Virginia
・ Duffin
・ Duffin Creek Water Pollution Control Plant
Duffing equation
・ Duffing map
・ Duffinselache
・ Duffin–Kemmer–Petiau algebra
・ Duffin–Schaeffer conjecture
・ Duffle Bag Boy
・ Duffle coat
・ Duffless
・ Duffmuttu
・ Duffner and Kimberly
・ Duffort
・ Duffryn
・ Duffryn High School
・ Duffrébo
・ Dufftown


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Duffing equation : ウィキペディア英語版
Duffing equation

The Duffing equation (or Duffing oscillator), named after Georg Duffing, is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by
:\ddot + \delta \dot + \alpha x + \beta x^3 = \gamma \cos (\omega t)\,
where the (unknown) function ''x''=''x''(''t'') is the displacement at time ''t'', \dot is the first derivative of ''x'' with respect to time, i.e. velocity, and \ddot is the second time-derivative of ''x'', i.e. acceleration. The numbers \delta, \alpha, \beta, \gamma and \omega are given constants.
The equation describes the motion of a damped oscillator with a more complicated potential than in simple harmonic motion (which corresponds to the case β=δ=0); in physical terms, it models, for example, a spring pendulum whose spring's stiffness does not exactly obey Hooke's law.
The Duffing equation is an example of a dynamical system that exhibits chaotic behavior.
Moreover, the Duffing system presents in the frequency response the jump resonance phenomenon that is a sort of frequency hysteresis behaviour.
==Parameters==

* \delta controls the size of the damping.
* \alpha controls the size of the stiffness.
* \beta controls the amount of non-linearity in the restoring force. If \beta=0, the Duffing equation describes a damped and driven simple harmonic oscillator.
* \gamma controls the amplitude of the periodic driving force. If \gamma=0 we have a system without driving force.
* \omega controls the frequency of the periodic driving force.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Duffing equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.